
5
Despite making use of a different approach, in general
we find good qualitative agreement with the res ults re-
ported in Refs. [
18, 19] after dropping S
g
, i.e. for β = 0.
IV. Conclusions
In this paper we have constructed one-dimensional lat-
tice models re sembling QED and QCD to investigate the
finite density and finite temperature regime. Despite the
drastic simplifications in these models, they capture some
essential physical properties e xpected from the full theory
and show an interesting behavior of the Polyakov loop.
We found that they—like their four-dimensional contin-
uous counterparts—exhibit the Silver Blaze property in
the zero temperature limit N → ∞. The µ-dependence
of the SU(3) (conjuga te) Polyakov loop P (P
†
) show s
the pec uliar µ-dependence also found in other approx-
imations of QCD. The models presented her e ca n also
serve as a starting point for the construction of mo re
elaborated models.
V. Acknowledgments
This work is supported by the Helmholtz Alliance
HA216/EMMI and by ERC-AdG-290623. J.M.P. thanks
the Yukawa Institute for Theoretical Physics, Kyoto Uni-
versity, where this work was completed during the YITP-
T-13-0 5 on ’New Frontiers in QCD’. I.-O.S. thanks the
Deutsche Forschungsgemeinschaft by STA 283/1 6-1 and
C.Z. thanks Nanya ng Technological University for sup-
port.
[1] P. d e Forcrand, PoS LAT2009, 010 (2009),
arXiv:1005.0539 [hep-lat].
[2] M. P. Lombardo, Mod.Phys.Lett. A22, 457 (2007),
arXiv:hep-lat/0509180 [hep-lat].
[3] G. Aarts, PoS LAT2009, 024 (2009), arXiv:0910.3772
[hep-lat]
.
[4] G. Aarts, L. Bongiovanni, E. Seiler, D. Sexty,
and I.-O. Stamatescu,
Eur.Phys.J. A49, 89 (2013),
arXiv:1303.6425 [hep-lat].
[5] G. Aarts, PoS LATTICE2012, 017 (2012),
arXiv:1302.3028 [hep-lat].
[6] A. Schmidt, Y. D. Mercado, and C. Gattringer, PoS
LATTICE2012, 098 (2012),
arXiv:1211.1573 [hep-lat].
[7] Y. D. Mercado, C. Gattringer, and A. Sch midt, Com-
put.Phys.Commun. 184, 1535 (2013)
, arXiv:1211.3436
[hep-lat]
.
[8] A. Alexandru, M. Faber, I. Horvath, and K.-F. Liu,
Phys.Rev. D72, 114513 (2005), arXiv:hep-lat/0507020
[hep-lat]
.
[9] A. Alexandru and U. Wen ger, Phys.Rev. D83, 034502
(2011)
, arXiv:1009.2197 [hep-lat].
[10] K. Langfeld, B. Lucini, and A. Rago, Phys.Rev.Lett.
109, 111601 (2012)
, arXiv:1204.3243 [hep-lat].
[11] K. Langfeld and J. M. Pawlowski, Phys.Rev. D88,
071502 (2013)
, arXiv:1307.0455 [hep-lat].
[12] N. Bilic, H . Gausterer, and S. Sanielevici, Phys.Rev.
D37, 3684 (1988)
.
[13] N. Bilic and K. Demeterfi, Phys.Lett. B212, 83 (1988).
[14] K. Splittorff and J. J. M. Verbaarschot, Phys.Rev.Lett.
98, 031601 (2007)
, arXiv:hep-lat/0609076 [hep-lat].
[15] K. Splittorff and J. J. M. Verbaarschot, Phys.Rev. D75,
116003 (2007)
, arXiv:hep-lat/0702011 [HEP-LAT].
[16] K. Splittorff and J. J. M. Verbaarschot, Phys.Rev. D77,
014514 (2008)
, arXiv:0709.2218 [hep-lat].
[17] L. Ravagli and J. J. M. Verbaarschot, Phys.Rev. D76,
054506 (2007)
, arXiv:0704.1111 [hep-th].
[18] J. Bloch, F. Bruckmann, and T. Wettig, JHEP 1310,
140 (2013)
, arXiv:1307.1416 [hep-lat].
[19] J. Bloch, F. Bruckmann, and T. Wettig, (2013),
arXiv:1310.6645 [hep-lat].
[20] R . De Pietri, A. Feo, E. Seiler, and I.-O. St amatescu,
Phys.Rev. D76, 114501 (2007), arXiv:0705.3420 [hep-
-lat]
.
[21] G. Aarts and I.-O. Stamatescu, JHEP 0809, 018 (2008),
arXiv:0807.1597 [hep-lat].
[22] M. Fromm, J. Langelage, S. Lottini, M. Neuman,
and O. Philipsen,
Phys.Rev.Lett. 110, 122001 (2013),
arXiv:1207.3005 [hep-lat].
[23] E. Seiler, D. Sexty, and I.-O. Stamatescu, Phys.Lett.
B723, 213 (2013)
, arXiv:1211.3709 [hep-lat].
[24] J. B. Kogut and L. Susskind, Phys.Rev. D11, 395 (1975).
[25] T. Banks, L. Susskind, and J. B. Kogut, Phys.Rev. D13,
1043 (1976)
.
[26] T. Banks, S. R aby, L. Susskind, J. Kogut, D. R . T. Jones,
P. N. Scharbach, and D. K. Sinclair (Cornell-Oxford-
Tel Aviv-Yeshiva Collaboration), Phys.Rev. D15, 1111
(1977)
.
[27] L. Susskind, Phys.Rev. D16, 3031 (1977).
[28] T. D. Cohen, Phys.Rev.Lett. 91, 222001 (2003),
arXiv:hep-ph/0307089 [hep-ph].
[29] P. Hasenfratz and F. Karsch, Phys.Lett. B125, 308
(1983)
.
[30] L. G. Molinari, Linear Algebra and its Applications 429,
2221 (2008)
.
[31] A. Maas, L. von Smekal, B. Wellegehausen, and A. Wipf,
Phys.Rev. D86, 111901 (2012), arXiv:1203.5653 [hep-
-lat]
.